5.9 C
İstanbul
14 Aralık 2018
Astrofizik Astronomi

Yıldız Astrofiziği: Hidrostatik Denge

Yıldızlar, kendi kütle çekimleri altında çöken gaz ve toz bulutlarından oluşur. Bulut çökmesine devam ettiği sürece, daha küçük bir hacimde sıkışmaya başlayan gazın basıncı artar. Öyle bir noktaya gelinir ki, en sonunda basınç kuvveti, kütle çekim kuvvetine eşit olarak, gazın daha fazla kendi üzerine çökmesini engeller. Kütle çekim kuvveti ile basınç kuvvetinin dengelendiği bu duruma, hidrostatik denge denir. Boşlukta bu kuvvetler dengesini sağlayan simetri bir küre olduğundan, yıldızlar küresel bir yapıya sahiptir. (Bkz. Kusursuz Küre)

Bulut kendi üzerine çöktüğü esnada, kaybettiği kütle çekimsel potansiyel enerjinin bir kısmını, termal (ısısal) enerjiye dönüştürür (Bkz. Virial Teoremi). Bu da, bulutun çöktükçe ısınmaya başlaması anlamına gelir. Bir noktada dengeye gelecek olan bu bulut, eğer nükleer tepkimeleri başlatacak yeterli sıcaklığa ulaşamadan hidrostatik dengeye gelirse, bir yıldız oluşmaz.

Gezegenler, hatta atmosferimiz de hidrostatik denge halindedir. Atmosferi Dünya’nın yüzeyine yapışmaktan alıkoyan şey, kütle çekimi altında çökmeye çalışan gazın, aksi yönde oluşturduğu basınç kuvvetidir.

hydrostatic_equilibrium
Figür 1. Bir yıldız üzerinde kütle çekim ve basınç kuvvetinin karşılıklı olarak dengelenmesi – Hidrostatik denge.

Hidrostatik Dengeye Etki Eden Faktörler

Aslında bu noktadan sonra yıldız her ne kadar belirli bir yarıçapa oturmuş olsa da, bu kuvvetler ortadan kalkmamıştır. Söz konusu kuvvetler hala oradadır, fakat birbirlerini dengelemektedir. İç yapıda meydana gelebilecek olası değişiklikler, bu kuvvet dengesinin bozulmasına neden olabilir. Örneğin bazı yıldızlar, belirli periyotlarla şişip büzülmektedir. Bu durum, basınçta meydana gelen ani değişikliklerin, kuvvetler dengesini belirli bir süreliğine bozmasından kaynaklanır.

Benzeri bir şekilde, eğer yıldız kendi ekseni etrafında çok hızlı dönüyorsa, özellikle ekvator bölgelerinde merkezkaç etkisi fazlaca hissedileceğinden, yıldız ekvator düzleminden dışa doğru şişerek küresel yapısını kaybedecektir. Güneş, oldukça yavaş dönen bir yıldız olduğu için bu durumdan etkilenmez, dönüş hızı saniyede 2 kilometre kadardır. Fakat VFTS 102 gibi bazı yıldızlar, saniyede 500 kilometre gibi muazzam dönüş hızlarına sahip olabiliyor. Böyle bir durumda yıldızın küresel yapısı ekvator düzleminden bozulmaya başlar. Dolayısıyla hidrostatik denge denklemine üçüncü bir parametre eklenmek zorundadır. Fakat Güneş gibi düşük hızlarda dönen yıldızlarda bu etki ihmal edilebilir düzeyde kalır.


Hidrostatik Denge Denklemi

Kuvvetler dengesini incelemek için, yapılabilecek birçok yaklaşım bulunuyor. Bunlardan birisi yıldızın herhangi bir katmanı üzerinde bir hacim elemanı alıp, bu hacim elemanın taban ve tavan yüzeylerine uygulanan basınç kuvvetleri ile kütle çekim kuvvetlerini eşitlemektir. Ardından çıkan ifadeler sadeleştirilerek hidrostatik denge denklemine ulaşılabilir. Fakat daha basit bir yaklaşımla da olayı çözebiliriz.

Yine benzer bir şekilde dV hacminde ve dA yüzey alanına sahip bir hacim elemanı düşünelim. Kalınlığı dr, merkezden uzaklığı da r olsun. Bu durumda bu elemana uygulanan kütle çekim kuvveti,

(1)   \begin{equation*} \nonumber dF=-\frac{GM_r dM}{r^2}=-\frac{GM_r \rho(r)}{r^2}dAdr \end{equation*}

olur. Burada dM, dV hacmindeki kütle, M_r ise r‘ye bağlı kütledir.

Bu noktadan sonra çözümümüzü basitleştiren varsayım ise şudur: Toplam net kuvvetin sıfırlanması için (dengede olması için) gerekli koşul, ancak basınç kuvvetindeki değişimin, kütle çekim kuvvetine eşit olmasıyla gerçekleşir. Yani bu durumda dP=\frac{dF}{dA}. Böylelikle yukarıdaki denklemi dA‘ya bölersek dP‘yi elde ederiz, ardından dr‘ye bölerek sonuç,

(2)   \begin{equation*} \nonumber \frac{dP(r)}{dr}=-\frac{GM_r\rho(r)}{r^2} \end{equation*}

olarak elde edilir. Bu denklem, hidrostatik denge denklemi olarak bilinir.

Ögetay Kayalı


Referanslar
1. K. S. De Boer and W. Seggewiss, Stars and Stellar Evolution, Chapter 4, Stellar Structure: Basic Equations, p.53
2. Dengkai Jiang et al, “The binary merger channel for the progenitor of the fastest rotating O-type star VFTS 102”
<http://mnras.oxfordjournals.org/content/428/2/1218.short>

Görseller
Figür 1. <https://ryanoursun.wikispaces.com/What+is+Hydrostatic+and+Thermal+Equilibrium%3F_jake>

Bize destek olarak daha çok içerik üretmemize katkıda bulunun!

Related posts

Kozmoloji: Evrenin Geometrisi

Ögetay Kayalı

Elektromanyetik Dalgalar: Mikrodalga

Emir Haliki

Ayrım Duyarlılığı Sınırı

Kemal Cihat Toprakçı

3 yorumlar

Yıldız Astrofiziği: Hertzsprung-Russell Diyagramı | Rasyonalist.org 31 Aralık 2016 at 15:15

[…] Yıldızlar oluşurken çöken gaz bulutunun giderek ısınmasıyla, merkezde hidrojenin helyuma dönüşümünü gerçekleştiren nükleer füzyon tepkimeleri başlar. Bu tepkimelerin gerçekleşme hızı, temel olarak yıldızın kütlesine bağlıdır. Çünkü nükleer tepkimeler sıcaklığa aşırı duyarlıdır ve merkezin ne kadar sıcak olacağını, yıldızın ne kadar çöktüğü belirler, bu da en temel olarak onun kütlesine bağlıdır. Fakat bunun yanında metallik (hidrojen ve helyum dışındaki element bolluğu) ve diğer faktörler de önemli bir rol oynar. Yine de bir yıldızın ömrünü, en temelde onun kütlesi belirler. Anakol üzerindeki yıldızlar aynı zamanda hidrostatik dengededir. (Bkz. Hidrostatik Denge) […]

Yıldız Astrofiziği: Yıldızlarda Dönme | Rasyonalist.org 12 Mayıs 2017 at 17:00

[…] Dönme hareketi evrenin her yerinde gördüğümüz, dolayısıyla tüm yapılar üzerinde çok önemli etkileri olan fakat pek de anılmayan bir konu. Bir yıldızın yıldız olarak kalabilmesini sağlayan kütle çekim ile basınç arasındaki dengeyi sağlayan hidrostatik denge ne kadar önemliyse, dönme de o kadar önemlidir. Çünkü kendisi de yıldız üzerinde başlı başına bir etkiye sahip. (Bkz. Yıldız Astrofiziği: Hidrostatik Denge) […]

Yorum Bırakın