Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Vektör Nedir? Skaler Çarpım ve Vektörel Çarpım Arasında Ne Fark Var?

Vektör Nedir? Skaler Çarpım ve Vektörel Çarpım Arasında Ne Fark Var?
16 dakika
30,235
Evrim Ağacı Akademi: Genel Fizik: Klasik Mekanik (Newton Fiziği) Yazı Dizisi

Bu yazı, Genel Fizik: Klasik Mekanik (Newton Fiziği) yazı dizisinin 3. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Skaler ve Vektörel Büyüklük Nedir? Boyut Analizi Nasıl Yapılır?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Skaler ve vektörel kavramlarını tanımlarken de ifade ettiğimiz gibi fizikte yalnızca sayılara değil, aynı zamanda onlara fiziksel anlam katan niceliklere de bakarız. Sıcaklık gibi skaler bir niceliği 32°C ile ifade ederken, hız gibi vektörel bir niceliğe ise 50 km/sa demenin yanında bir de ek olarak yön belirterek kullanırız. Yani vektörler, hem büyüklükleri hem de yönleri olan fiziksel nicelikleri ifade etmek için kullandığımız bir araçtır.

Bu yazıda iki farklı çarpma tanımını göreceksiniz ve bu, muhtemelen size biraz tuhaf gelecek. Örneğin şu zamana kadar "A çarpı B" ile "B çarpı A"'nın aynı sonucu verdiğini bir mutlak gibi kafanıza yerleştirdiniz; fakat vektör matematiğinde bu, biraz daha farklı bir anlam ifade eder ve her zaman doğru olmayabilir. Bu nedenle skaler çarpım ve vektörel çarpım konularındaki bazı tanımlar size tuhaf gelebilir, neden böyle şeylerden bahsediliyor diye düşünebilirsiniz. Lakin bunun nedenlerini konuya girdikçe daha iyi anlayacaksınız. Bu ayrımı anlamak oldukça elzemdir.

Tüm Reklamları Kapat

Koordinat Sistemleri

Yön kavramı işin içerisine dahil olduğundan, iyi tanımlamalar yapabilmek için koordinat sistemlerine ihtiyacımız var. Hiç kuşkusuz ilk akla gelen kartezyen koordinat sistemleridir. Burada bir noktayı, karşılık geldiği x ve y değerleri ile (x,y)\text{(x,y)} şeklinde ifade ederiz.

Fakat her ne kadar göze çok basit görünse de fizikte kartezyen koordinatları seçmek çoğunlukla baş ağrıtır. Onun yerine, yaptığımız bir takım fiziksel işlemleri kolaylaştıran temellere sahip kutupsal koordinat sistemlerini kullanacağız. Elbette durumdan duruma, bunları değiştirmenizde ya da birbiri arasında dönüştürmenizde bir sakınca yoktur.

Tüm Reklamları Kapat

Kutupsal koordinat sisteminde, orijinden ilgili noktaya olan uzaklık r ile gösterilir. Genellikle de pozitif x-ekseninden saat yönünün tersinde ölçülen θ\text{θ} ("teta") açısı buna eşlik eder. Dolayısıyla kutupsal koordinatlarda (r,θ)\text{(r,θ)} gösterimine sahip oluruz. Elbette kartezyen koordinatlar olan (x,y)\text{(x,y)}'den, kutupsal koordinatlar olan (r,θ)\text{(r,θ)}'ya dönüşüm yapabiliriz.

x=rcos⁡θy=rsin⁡θ\Large x=r\cos{\theta} \newline y=r\sin{\theta}

Bu eşitlik hiç kuşkusuz trigonometrinin en temel tanımlarından gelmektedir. Bunları kolaylıkla bulabileceğiniz için, en azından bir kere kendinizin bulmasını tavsiye etmek durumundayız.

Evrim Ağacı'ndan Mesaj

Keza θ\text{θ} açısının tanjant değeri de aşağıdaki gibi ifade edilir.

tan⁡θ=y/x\Large \tan{\theta}=y/x

Pisagor bağıntısından yola çıkarak ilgili r\text{r} değerimizi de aşağıdaki gibi tanımlarız:

r=x2+y2\Large r=\sqrt{x^2+y^2}

Vektör Nedir?

Vektör, büyüklüğü (ya da uzunluğu) ve yönü olan geometrik bir niceliktir. Kimi zaman geometrik vektör, uzaysal vektör veya Öklidyen vektör de denilir. En basit tabiriyle, yön kavramı eklenmiş skaler nicelik gibi düşünebilirsiniz. Vektörleri ifade ederken, onları diğerlerinden ayırmak için genellikle iki temel yöntemden biri kullanılır. Örneğin bir A\text{A} vektörünü ifade etmek istiyorsak ya kalın harflerle A\bold{A} yazarız ya da A⃗\vec{A} şeklinde üzerinde bir ok işaretiyle gösteririz.

Tüm Reklamları Kapat

A\bold{A} vektörünün büyüklüğü ise A\text{A} olarak veya |A|\text{|A|} olarak yazılır. Örnek bir vektör gösterimi ise aşağıdaki gibidir.

Genellikle böyle bir gösterimde OA vektörünü göstermek için üzerinde ok işaretli bir gösterim tercih etmeyiz (bu işleri uzatmaktan ve karışık hale getirmekten başka bir işe yaramaz). Bunun yerine bu vektöre herhangi bir harf veririz, örneğin a\bold{a} vektörü deriz ve aşağıdaki gibi tanımlarız.

a=(2,3)\Large \bold{a}=(2,3)

Vektörlerin Eşitliği

Eğer A\bold{A} ve B\bold{B} vektörü aynı büyüklüğe ve aynı yöne sahipse bu iki vektör eşit alınabilir. Bir başka deyişle paralel doğrular boyunca eşit büyüklüktelerse A=B\bold{A}=\bold{B} denilebilir. Aşağıdaki görsel bu durumu özetlemektedir.

Tüm Reklamları Kapat

Bu durum bize vektörün büyüklüğünü ve yönünü değiştirmeden onu ötelememize olanak sağlar.

Vektörlerin Toplanması

Şu zamana kadar kullandığınız matematikte toplama ve çıkarma için özel incelemeler yapmanız gerekmediyse bu durumu biraz yadırgayabilirsiniz. Fakat vektörler, matematiğin özel bir alanı olduğundan ayrıca irdelenmeyi gerektirir. Bildiğimiz şekilde toplanıp çıkarılmadıklarından ya da çarpılıp bölünmediklerinden emin olmamız lazım.

Neyse ki vektörlerin toplanması ve çıkarılması o kadar sıkıntılı bir durum değildir. Üstelik hangi sırayla topladığımıza da dikkat etmemiz gerekmez. Yani:

A+B=B+A\Large \bold{A}+\bold{B}=\bold{B}+\bold{A}

Tüm Reklamları Kapat

Agora Bilim Pazarı
  • Dış Sitelerde Paylaş

olarak yazılabilir. Buna toplamanın komütatif olması denir. İlk defa böyle bir kavramlarla karşılaştıysanız, neden böyle olağan bir şeyi açıklığa kavuşturmaya çalıştığımız tuhaf gelebilir. Bu noktada şunu fark etmeniz gerekiyor, bu her zaman böyle olmak zorunda değildir. Fakat vektörlerde toplama, komütatiftir. Aynı zamanda;

(A+B)+C=A+(B+C)\Large (\bold{A}+\bold{B})+\bold{C}=\bold{A}+(\bold{B}+\bold{C})

olarak da yazılabilir. Buna birleştirilebilir (asosiye) olma durumu denir. Bir de dağılma özelliği vardır. O da;

α(A+B)=αA+αB\Large \alpha(\bold{A}+\bold{B})=\alpha \bold{A} + \alpha \bold{B}

şeklinde yazılır. Burada α \text{α }bir skalerdir. Bunu bir nevi vektörün önüne gelen bir katsayı olarak görebilirsiniz, hiç kuşkusuz etkisi vektörün büyüklüğünü artırmak ya da azaltmaktır, onun yönü üzerinde bir etkisi yoktur.

Bu noktada vektörlerde çıkarma işlemini ele almak gerek. Çıkarmayı yaparken, o vektörün ters işaretlisi ile toplamaya odaklanalım, aslında yaptığımız şey budur. Yani bir A\bold{A} vektöründen B\bold{B} vektörünü çıkarmak istiyorsak, B\bold{B}'nin yönünü ters çevirir ve A\bold{A} ile toplarız.

A−B=A+(−B)\Large \bold{A}-\bold{B}=\bold{A}+(-\bold{B})

Şu noktada, bütün bu yazdıklarımızı biraz görselleştirmeye ihtiyacımız var. En nihayetinde vektörler geometrik bir anlam taşıyor. Bunun için paralelkenar yöntemi adını verdiğimiz oldukça sıradan bir yöntem kullanırız. A\bold{A} ve B\bold{B} vektörleri aşağıda oldukları gibi uca eklenir. A+B\bold{A}+\bold{B} toplamından elde edilen vektör ise başlangıç noktasından, bitiş noktasına çizilen vektör olur. Burada komütatifliği de doğrudan görebilirsiniz, paralelkenarın bir tarafı bir işlemi, diğer tarafı öbür işlemi tanımlar fakat son aynıdır.

Skaler Çarpım (Nokta Çarpım)

Vektörlerde çarpım, toplama kadar sıradan değildir. Vektörlerle yapacağımız iki farklı türden çarpım söz konusudur. Bunlar skaler çarpım ve vektörel çarpımdır.

Skaler çarpım, nokta ile gösterildiği için "nokta çarpım" olarak da bilinir (vektörel çarpımda ise daha klasik olan ""çarpı işareti" kullanılır) ve aşağıdaki gibi tanımlanır:

Tüm Reklamları Kapat

A⋅B≡ABcos⁡θ\Large \bold{A} \cdot \bold{B}\equiv AB\cos{\theta}

Buradaki teta açısı (θ\text{θ}), A\bold{A} ve B\bold{B} vektörü arasındaki açıdır. Geometrik olarak bu çarpım, A defa B\bold{B}'nin A\bold{A} boyunca olan izdüşüm çarpımından ibarettir. Bu yorumu anlamak için paralel ve dik olma durumlarını ele alabilirsiniz. Paralel olması durumunda kosinüs ifadesi birdir ve çarpım bu iki vektörün büyüklükleri çarpımından ibaret olur. Dik oldukları durumunda ise sonuç sıfırdır, çünkü diğeri üzerine bir izdüşüm yoktur. Ayrıca bu çarpımın sonucunun bir skaler olduğuna dikkat edin, bu nedenle skaler çarpım olarak adlandırılır. Girdide iki vektör vardır, fakat sonuç bir skalerdir.

Skaler çarpımda da, toplamada olduğu gibi komütatiflik özelliği bulunur.

A⋅B=B⋅A\Large \bold{A} \cdot \bold{B} = \bold{B} \cdot \bold{A}

Tüm Reklamları Kapat

Ayrıca dağılma özelliğine de sahiptir.

A⋅(B+C)=A⋅B+A⋅C\Large \bold{A} \cdot (\bold{B}+\bold{C})=\bold{A} \cdot \bold{B}+\bold{A} \cdot \bold{C}

Sadece bu iki özelliği kullanarak kosinüs yasasını ispatlamak oldukça kolaydır. C=A-B\text{C=A-B} gibi bir vektör tanımlar ve C⋅CC\cdot C skaler çarpımına bakacak olursanız:

C⋅C=(A−B)⋅(A−B)=A⋅A−A⋅B−B⋅A+B⋅B\bold{C}\cdot \bold{C}=(\bold{A}-\bold{B})\cdot (\bold{A}-\bold{B})=\bold{A}\cdot \bold{A} - \bold{A} \cdot \bold{B} - \bold{B} \cdot \bold{A} + \bold{B} \cdot \bold{B}

Tüm Reklamları Kapat

olduğunu bulursunuz. Bunu düzenlediğimizde ise aşağıdaki gibi kosinüs teoremini elde ederiz.

C2=A2+B2−2ABC^2=A^2+B^2-2AB

Vektörel Çarpım (Çapraz Çarpım)

Bir diğer çarpım olan vektörel çarpımı ise çarpı işareti olan "x" işaretiyle gösteririz (skaler çarpımda bu noktaydı). A\bold{A} ve B\bold{B}'nin vektörel çarpımı ise aşağıdaki gibi tanımlanır.

A×B≡ABsin⁡θn^\Large \bold{A} \times \bold{B}\equiv AB\sin{\theta}\hat{\bold{n}}

Tüm Reklamları Kapat

Burada ilk dikkat edilmesi gereken bu çarpımın sonucunun da bir vektör olduğudur, skaler çarpımda sonuç bir skalerdi. Bunu da buradaki n^\hat{\bold{n}} ("şapkalı n") vektörü sağlar. Bu, A\text{A} ve B\text{B} düzleminden dik yönelmiş bir birim vektördür. Fakat bu düzleme dik iki ayrı yön söz konusudur. Bu durumu açıklığa kavuşturmak için sağ el kuralı kullanılır. Eğer parmağınızı herhangi bir vektör yönünde doğrultur ve ardından diğer vektörün olduğu yöne doğru bükerseniz, baş parmağınız çarpımın sonucunun yönünü gösterecektir.

Örneğin yukarıdaki görseli inceleyelim. İşaret parmağınızı u yönünde tutun ve v'ye doğru kıvırın. Bu durumda baş parmak, çarpımın olduğu yön olan yukarıyı işaret eder. Tersini yapmaya kalkar ve v yönünde seçerseniz, tam olarak güzel bir özelliği keşfedersiniz. Bu durumda baş parmak aşağıyı gösterecektir. Bu şunu ifade eder:

B×A=−(A×B)\Large \bold{B}\times \bold{A} = -(\bold{A}\times \bold{B})

Yani vektörel çarpım komütatif değildir. Fakat dağılma özelliğini gösterir.

Tüm Reklamları Kapat

A×(B+C)=(A×B)+(A×C)\Large \bold{A} \times (\bold{B}+\bold{C})=(\bold{A} \times \bold{B}) + (\bold{A} \times \bold{C})

Ayrıca ∣A×B∣|\bold{A} \times \bold{B}| ifadesi A\bold{A} ile B\bold{B} tarafından oluşturulan paralelkenarın alanını ifade eder. Bu nedenle bu iki vektör paralelse, sonuç sıfırdır (sinüs ifadesinden dolayı).

Vektör Bileşenleri

Herhangi keyfi bir A vektörü alırsak, bunu baz vektörlerini kullanarak aşağıdaki gibi ifade edebiliriz.

A=Axx^+Ayy^+ Azz^\Large \bold{A}=A_x \hat{\bold{x}} + A_y \hat{\bold{y}} + A_z \hat{\bold{z}}

Tüm Reklamları Kapat

Burada x^\hat{\bold{x}}, y^\hat{\bold{y}} ve z^\hat{\bold{z}} ifadeleri kartezyen koordinatlardaki üç baz vektörüdür. Bu birim vektörlerin, önlerine gelen ilgili eksenin katsayısıyla çarpıldığında, o eksendeki bileşenini ifade eden vektörü vereceklerdir. Bu üç eksendeki bileşenler de uç uca eklenip toplanınca, ilgili vektörün kendisini verecektir. Böylelikle bir vektör, bileşenlerine ayrılmış olur. Burada kolaylık açısından koordinat sistemimizi, kartezyen koordinatlar olarak seçtik. Şu durumda hani kartezyen koordinatlar bize zorluk çıkarıyordu diye düşünebilirsiniz. Fakat amacımız sadece tanımlamalar yapmak, durumu işlemlere girdiğinizde daha iyi kavrayacaksınız.

Bu durumda iki vektör, bileşenleri göz önüne alındığında aşağıdaki gibi toplanır.

A+B=(Axx^+Ayy^+Azz^)+(Bxx^+Byy^+Bzz^)=(Ax+Bx)x^+(Ay+By)y^+(Az+Bz)z^\large \bold{A} + \bold{B} = (A_x \hat{\bold{x}} + A_y \hat{\bold{y}} + A_z \hat{\bold{z}}) + (B_x \hat{\bold{x}} + B_y \hat{\bold{y}} +B_z \hat{\bold{z}}) \newline =(A_x+B_x)\hat{\bold{x}}+(A_y+B_y)\hat{\bold{y}}+(A_z+B_z)\hat{\bold{z}}

Bir skalerle çarpıldığında ise aşağıdaki durum gerçekleşir.

Tüm Reklamları Kapat

αA=(αAx)x^+(αAy)y^+(αAz)z^\Large \alpha\bold{A}=(\alpha A_x) \hat{\bold{x}} + (\alpha A_y) \hat{\bold{y}} + (\alpha A_z) \hat{\bold{z}}

Bu durum oldukça akla yatkındır. Çünkü bir vektörü skalerle çarpmak, onu belirli bir oranda küçültmek ya da büyütmek anlamına gelir. Bunun gerçekleşebilmesi için her bir bileşen aynı oranda değişmelidir.

Bir vektörün skalerle çarpımı onun doğrultusunu değiştirebilir. Vektörün doğrultusu işaretle belirlenir (+ veya -), dolayısıyla negatif bir skalerle çarpmak onun doğrultusunu değiştirir. Eğer -1 ile çarpılırsa dolayısıyla sadece yönü değişir ama büyüklüğü değişmez.

Skaler çarpma işleminde ne olduğunu görmek için birim vektörlerin birbirlerine dik olmalarından kaynaklı sonucu göz önünde bulundurmak gerekir. Nokta çarpımda gelen ifade kosinüs olduğundan, bu birim vektörlerin kendileriyle çarpımı 1 değerini (çünkü cos⁡(0°)=1\cos(0°)=1), kendileri arasındaki çarpımı ise 0 değerini (çünkü cos⁡(90°)=0\cos(90°)=0) verir.

Tüm Reklamları Kapat

x^⋅x^=y^⋅y^=z^⋅z^= 1x^⋅y^=x^⋅z^=y^⋅z^=0\Large \hat{\bold{x}}\cdot \hat{\bold{x}} = \hat{\bold{y}}\cdot \hat{\bold{y}} = \hat{\bold{z}}\cdot \hat{\bold{z}} = 1 \newline \hat{\bold{x}}\cdot \hat{\bold{y}} = \hat{\bold{x}}\cdot \hat{\bold{z}} = \hat{\bold{y}}\cdot \hat{\bold{z}} = 0

Dolayısıyla skaler çarpımlarda bileşenlerle ilgili aşağıdaki ifadeye ulaşırız.

A⋅B=(Axx^+Ayy^+Azz^)⋅(Bxx^+Byy^+Bzz^)=(AxBx)+(AyBy)+(AzBz)\large \bold{A} \cdot \bold{B} = (A_x \hat{\bold{x}} + A_y \hat{\bold{y}} + A_z \hat{\bold{z}}) \cdot (B_x \hat{\bold{x}} + B_y \hat{\bold{y}} +B_z \hat{\bold{z}}) \newline =(A_xB_x)+(A_yB_y)+(A_zB_z)

Böylelikle neden iki vektörün skaler çarpımının bir skaleri verdiği daha rahat bir şekilde görülür. Çünkü birim vektörlerin çarpımlarından ya 1 değeri gelerek sadece ilgili katsayı çarpımlarını bırakır ya da 0 gelerek tüm terimi yok eder.

Tüm Reklamları Kapat

Ayrca herhangi bir A\bold{A} vektörünün, herhangi bir birim vektörle olan skaler çarpımı, A\bold{A}'nın o doğrultudaki bileşenini verir. Bu durumun bir benzerini aşağıdaki eşitlikte görebilirsiniz.

A⋅A=Ax2+Ay2+Az2A=Ax2+Ay2+Az2\Large \bold{A}\cdot \bold{A} = A_x^2+A_y^2+A_z^2 \newline A=\sqrt{A_x^2+A_y^2+A_z^2}

Vektörel çarpımda ise birim vektörlerin çarpımı daha önce bahsettiğimiz sağ el kuralı ile belirlenebilir.

x^×x^=y^×y^=z^×z^=0x^×y^=−y^×x^=z^y^×z^=−z^×y^=x^z^×x^=−x^×z^=y^\Large \hat{\bold{x}}\times \hat{\bold{x}} = \hat{\bold{y}}\times \hat{\bold{y}} = \hat{\bold{z}}\times \hat{\bold{z}} = 0 \newline \hat{\bold{x}}\times \hat{\bold{y}} = -\hat{\bold{y}}\times \hat{\bold{x}}=\hat{\bold{z}} \newline \hat{\bold{y}}\times \hat{\bold{z}} = -\hat{\bold{z}}\times \hat{\bold{y}}=\hat{\bold{x}} \newline \hat{\bold{z}}\times \hat{\bold{x}} = -\hat{\bold{x}}\times \hat{\bold{z}}=\hat{\bold{y}}

Tüm Reklamları Kapat

Bu nedenle,

A×B=(Axx^+Ayy^+Azz^)×(Bxx^+Byy^+Bzz^)=(AyBz−AzBy)x^+(AzBx−AxBz)y^+(AxBy−AyBx)z^\large \bold{A} \times \bold{B} = (A_x \hat{\bold{x}} + A_y \hat{\bold{y}} + A_z \hat{\bold{z}}) \times (B_x \hat{\bold{x}} + B_y \hat{\bold{y}} +B_z \hat{\bold{z}}) \newline =(A_yB_z-A_zB_y)\hat{\bold{x}} +(A_zB_x-A_xB_z)\hat{\bold{y}}+(A_xB_y-A_yB_x)\hat{\bold{z}}

olacaktır. Bunu ilk bakışta karışık bulabilirsiniz. Fakat aslında bu bir determinant olarak yazılabilir ve böylesi oldukça akılda kalıcıdır.

A×B=∣x^y^z^AxAyAzBxByBz∣\Large \bold{A} \times \bold{B} = \begin{vmatrix}

\hat{\bold{x}} & \hat{\bold{y}} & \hat{\bold{z}} \\

A_x & A_y & A_z \\

B_x & B_y & B_z

\end{vmatrix}

Tüm Reklamları Kapat

Üçlü Çarpımlar

Şu zamana kadar gösterdiklerimiz ikili ilişkileri inceliyordu. Fakat elbette olay iki taneyle sınırlı olmak zorunda değil, bunun için üçlü çarpımları da ele almakta fayda var. Bazıları biraz uğraştırıcı olsa da aslında bunları kendiniz de bulabilirsiniz.

A⋅(B×C)=B⋅(C×A) =C⋅(A×B) A⋅(C×B)=B⋅(A×C)=C⋅(B×A)A⋅(B×C)=(A×B)⋅C\Large \bold{A} \cdot (\bold{B}\times \bold{C}) = \bold{B} \cdot (\bold{C}\times \bold{A}) = \bold{C} \cdot (\bold{A}\times \bold{B}) \newline \bold{A} \cdot (\bold{C}\times \bold{B}) = \bold{B} \cdot (\bold{A}\times \bold{C}) = \bold{C} \cdot (\bold{B}\times \bold{A}) \newline \bold{A} \cdot (\bold{B}\times \bold{C}) = (\bold{A} \times \bold{B})\cdot \bold{C}

Buradaki geometrik anlama dikkatinizi çekmek isterim. Bunları sadece tuhaf sembollerle ifade edilen bir matematik olarak görmemeli ve bir fizikçi bakış açısıyla anlamına odaklanmalısınız. Daha önce ∣B×C∣|\bold{B}\times \bold{C}| için taban alanı ifadesini kullanmıştık, bu durumda ∣A⋅(B×C)∣|\bold{A}\cdot (\bold{B}\times \bold{C})| ifadesi A\bold{A}, B\bold{B} ve C\bold{C} tarafından oluşturulan paralel yüzlünün hacmidir. Çünkü ∣Acos⁡θ∣|\bold{A} \cos θ| yüksekliktir.

Son ifadede skaler çarpımla vektörel çarpımın kendi arasında yer değişebildiğine dikkat edin. Bunun manasını artık çıkarabiliyor olmalısınız, eğer neden böyle olduğunu anlayamıyorsanız, önceki paragrafın anlamı üzerinde biraz daha durmalısınız. Ayrıca,

Tüm Reklamları Kapat

A×(B×C)=B(A⋅C)−C(A⋅B)(A×B)×C=−C×(A×B)=−A(B⋅C)+B(A⋅C)\large \bold{A} \times (\bold{B}\times \bold{C}) = \bold{B}(\bold{A}\cdot \bold{C}) - \bold{C}(\bold{A}\cdot \bold{B}) \newline (\bold{A} \times \bold{B}) \times \bold{C} = - \bold{C} \times (\bold{A} \times \bold{B}) = -\bold{A}(\bold{B}\cdot \bold{C}) + \bold{B}(\bold{A}\cdot \bold{C})

olacaktır. Bu da vektörel çarpımın asosiye olmadığını gösterir. Bunu ispatlamak için keyfi birim vektörler alarak bir karşılaştırma yapabilirsiniz.

Konum, Yer Değiştirme ve Ayrılık Vektörleri

Koordinatları, bir cismin ya da bir olayın nerede gerçekleştiğini ifade etmek için kullandığımızdan bahsetmiştik. Bu noktada yeni bir tanım yaparak, başlangıçtan ilgili noktaya olan bir vektör tanımlayıp buna konum vektörü adını vereceğiz.

r≡xx^+yy^+zz^\Large \bold{r} \equiv x \hat{\bold{x}}+y \hat{\bold{y}}+z \hat{\bold{z}}

Tüm Reklamları Kapat

Başlangıçtan olan uzaklığı ise,

r=x2+y2+z2\Large r=\sqrt{x^2+y^2+z^2}

olarak ifade edebiliriz. Bu durumda ilgili birim vektör aşağıdaki gibi tanımlanır.

r^=rr=xx^+yy^+zz^x2+y2+z2\Large \hat{\bold{r}}=\frac{\bold{r}}{r} = \frac{x \hat{\bold{x}}+y \hat{\bold{y}}+z \hat{\bold{z}}}{\sqrt{x^2+y^2+z^2}}

Tüm Reklamları Kapat

Sonsuz küçük yer değiştirme vektörü ise aşağıdaki gibi tanımlanır.

dl=dxx^+dyy^+dzz^\Large d\bold{l}=dx \hat{\bold{x}}+dy \hat{\bold{y}}+dz \hat{\bold{z}}

Genellikle iki nokta arasındaki kıyaslamalarımız söz konusu olduğundan, bu iki cisim veya olay arasındaki ayrıklığı ifade etmek için ayrıklık vektörü tanımlarız.

Υ≡r−r′\Large \bold{\Upsilon}\equiv \bold{r}-\bold{r'}

Tüm Reklamları Kapat

Büyüklüğü ise aşağıdaki gibi ifade edilir.

Υ=∣r−r′∣\Large \bold{\Upsilon}= |\bold{r}-\bold{r'}|

Birim vektör ise aşağıdaki gibi tanımlanır.

Υ^=ΥΥ=r−r′∣r−r′∣\Large \hat{\bold{\Upsilon}} = \frac{\bold{\Upsilon}}{\Upsilon}=\frac{\bold{r}-\bold{r'}}{|\bold{r}-\bold{r'}|}

Düzeltmeler: Dot producttaki hata düzeltildi.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Genel Fizik: Klasik Mekanik (Newton Fiziği) Yazı Dizisi

Bu yazı, Genel Fizik: Klasik Mekanik (Newton Fiziği) yazı dizisinin 3. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Skaler ve Vektörel Büyüklük Nedir? Boyut Analizi Nasıl Yapılır?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
39
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 8
  • Mmm... Çok sapyoseksüel! 5
  • İnanılmaz 5
  • Grrr... *@$# 5
  • Korkutucu! 3
  • Güldürdü 1
  • Merak Uyandırıcı! 1
  • Muhteşem! 0
  • Bilim Budur! 0
  • Umut Verici! 0
  • Üzücü! 0
  • İğrenç! 0
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 28/03/2024 15:41:56 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/12872

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Kategoriler ve Etiketler
Tümünü Göster
Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Hızlı
Gezegen
Egzersiz
Yangın
Kuantum Fiziği
Diyet
Mavi
Antibiyotik
Balina
Evrim Tarihi
Genetik Değişim
İngiltere
Şiddet
Tür
Türlerin Kökeni
Hayatta Kalma
Gebelik
Doğal
Biyocoğrafya
Radyoaktif
Oyun
Astrofizik
Buz
İyi
Damar
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün bilimseverlerle ne paylaşmak istersin?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Ö. Kayalı, et al. Vektör Nedir? Skaler Çarpım ve Vektörel Çarpım Arasında Ne Fark Var?. (28 Kasım 2022). Alındığı Tarih: 28 Mart 2024. Alındığı Yer: https://evrimagaci.org/s/12872
Kayalı, Ö., Bakırcı, Ç. M. (2022, November 28). Vektör Nedir? Skaler Çarpım ve Vektörel Çarpım Arasında Ne Fark Var?. Evrim Ağacı. Retrieved March 28, 2024. from https://evrimagaci.org/s/12872
Ö. Kayalı, et al. “Vektör Nedir? Skaler Çarpım ve Vektörel Çarpım Arasında Ne Fark Var?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 28 Nov. 2022, https://evrimagaci.org/s/12872.
Kayalı, Ögetay. Bakırcı, Çağrı Mert. “Vektör Nedir? Skaler Çarpım ve Vektörel Çarpım Arasında Ne Fark Var?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, November 28, 2022. https://evrimagaci.org/s/12872.
ve seni takip ediyor

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close