Popüler BilimAstronomiEvrenKozmoloji

Karanlık Madde Nedir? Gerçekten Var Mı?

Karanlık madde (KM) herhangi bir elektromanyetik etkileşime girmeyen, bu nedenle herhangi bir ışığı soğurmayan, salmayan ya da yansıtmayan, dolayısıyla tamamen karanlık olan, evrenin madde yoğunluğunun %26’sını oluşturduğunu düşündüğümüz bir maddedir (bildiğimiz madde yoğunluğu ise yalnızca %4.9). Karanlık maddeyi kütle çekimsel etkileşime girmesi nedeniyle galaksilerde, galaksi kümelerinde, dolaylı etkilerinden dolayı tespit edebiliyor ya da var olduğunu düşünmek için haklı gerekçeler bulabiliyoruz.

Günümüzde parçacık fiziği, karanlık madde adayı olarak birçok parçacık tanımlamıştır ve bunları aramaktadır. Fakat bunun yanında karanlık maddenin olmasına gerek olmadığını öngören alternatif çekim teorileri de bulunmaktadır.

Günümüzde onun bir parçacık olduğunu düşünenler ile hiç var olmadığını düşünenler arasında bilim dünyasında ilginç bir çekişme yaşanmaktadır. Geçmişte onun bir parçacık olduğuna dair düşünceler daha çok kabul görürken, günümüzde alternatif teorilerin elinin güçlendiğini, fakat her ikisinin de hala problemleri olduğununun altını çizmek gerek. Bu yazıda tüm bu düşüncelerin nereden ortaya çıktığına ve neden her birini ayrıca değerlendirmemiz gerektiğine değineceğiz.

Karanlık Maddenin Keşfi

Karanlık madde fikri ilk olarak 1933 yılında İsviçreli astronom Fritz Zwicky‘nin yaptığı bir gözlem sonucunda ortaya çıkmaya başlıyor.* Evrende galaksiler, çekimsel etkileşimle bir arada durarak galaksi kümelerini oluşturur ve bu galaksi kümeleri de bir araya gelerek daha büyük süper kümeleri oluşturur. Zwicky, Coma galaksi kümesi içerisindeki galaksilerin hareketlerini inceliyor. İncelemesi sonucunda galaksilerin oldukça hızlı hareket ettiğini görüyor. Bildiğimiz üzere, eğer çok hızlı bir şekilde dolanma hareketi yaparsanız, hissedeceğiniz merkezkaç etkisi de o kadar fazla olur. Öyle ki, bu etki sebebiyle dışarıya doğru savrularak sistemi terk edebilirsiniz.

Dolayısıyla ilk akla gelen, gözlemini yaptığı galaksilerin, bir şekilde oradan geçiyor olduğu ya da birbirleriyle etkileşmeleri sebebiyle dışarıya doğru fırlatıldıkları olabilir. Fakat Zwicky bu durumu inceliyor ve bu galaksilerin rastgele hareket etmediğini, küme içerisinde belirli bir yörünge hareketi yaptıklarını buluyor. Yani küme ne dağılıyor ne de çöküyor. Buraya kadar olanlar, yalnızca hafiften sıradışı gibi görünüyor.

Galaksinin yaptığı ışıtmadan, yani parlaklığından o galaksinin aşağı yukarı kütlesini tahmin etmek mümkündür. Çünkü galaksiyi aydınlatan mekanizmaları biliyoruz, bunların en başında yıldızlar geliyor. Bu bir tahmin olduğundan, elbette belirli bir hata aralığına sahip, fakat yine de aşırı uçuk sonuçlar olması beklenmeyen bir şeydir. Galaksinin ışıtması yıldızlardan ve oradaki gaz ve tozdan geliyorsa, ışıtmayı ölçerek yıldız sayısını aşağı yukarı tahmin edebiliriz.

Bunu yaptıktan sonra Zwicky, ikinci bir yöntem olarak, küme üzerinde Virial Kuramını kullanarak kümenin toplam kütlesini hesaplıyor. Çünkü eğer sistem dengedeyse, ne çöküyor ne de dağılıyorsa, merkezkaç ile kütle çekim dengede olmalıdır. Zwicky, yaptığı hesap sonucunda galaksi kümesinin kütlesini beklenen değerden 400 kat fazla ölçüyor. Bu durum, tahminen ölçtüğünüz değerdeki yıldız sayısını artırarak açıklanacak bir değer değildir. Dolayısıyla bu duruma başka bir açıklama getirmek gerekiyor. Bu noktada ilk akla gelen, orada gözlemi yapılamayan (karanlık) bir madde olduğu. Çünkü kütle tahminimiz, ışıma yapan cisimler üzerinden yürüyor, dolayısıyla bu madde ışıma yapmıyor olmalı.

Benzeri bir gözlem sonucunu da 1936 yılında Sinclair Smith, Virgo kümesinde üzerinde yaparak buluyor. Kümedeki elemanların hız dağılımlarını incelediğinde, orada ışıma yapan maddeden, çok daha fazla miktarda madde olması gerektiği ön görülüyor. Fakat bu madde miktarı, bildiğimiz gök cisimleri (gezegenler, soğuk yıldızlar, kara delikler vb.) ile açıklanamıyor, çünkü miktar çok çok fazla. İki farklı küme üzerinde aynı sonuçların çıkmış olması, orada ışıma yapmayan (karanlık) bir madde fikrini desteklemeye başlıyor. Çünkü tek bir küme üzerinde yapılan gözlem, belki de istisnai bir durumdu, belki de Zwicky’nin yaptığı bir hata vardı. Fakat Smith’in de aynı sonuçları bulması, bu fikri güçlendirmeye başlıyor.

hercules galaxy cluster karanlık madde - eso
Herkül galaksi kümesi. Görsel: ESO

Karanlık Madde Fikrinin Güçlenişi

Zwicky ve Smith’in yaptığı, küme elemanlarının hareketi gözleminden sonra, Horace Babcock 1939 yılında Andromeda Galaksisi’nin dönme eğrisi üzerinde ilginç bir durum fark ediyor. Dönme eğrisi kabaca, galaksinin merkezden dışarıya doğru olan hız dağılımını ifade eder. Mevcut fizik bilgimizle, sarmal bir galaksi olan Andromeda’nın dönme eğrisini teorik olarak tahmin edebiliyoruz (elbette onun kütlesini tahmin ederek). Burada tahmin diyoruz, fakat bu tahminlerin hata aralıkları da olaya dahil ediliyor, yani tahminden öte bu olması beklenen gerçeklik diyebiliriz. Sadece doğrudan ölçemediğimiz için tahmin diyoruz.

Babcock, görüyor ki Andromeda’nın dış bölgeleri oldukça hızlı dönüyor. Andromeda, dağılıp parçalanmadığına göre, dış bölgelerin bu kadar hızlı dönerek galaksinin tek bir parça olarak kalması durumu, ancak orada onu tutan fazladan kütle çekim varsa mümkündür. Bu da orada, görülemeyen karanlık bir maddenin olabileceği fikrini destekliyor.

Aynı metotla yapılan iki farklı ölçüm, bir fikre işaret ediyordu. Şimdi ise, tamamen alternatif bir metot da aynı fikri destekliyor görünüyor. Bu durum hatalardan arındığımızı ve gerçekten orada bir şey olma ihtimalinin çok fazla olduğunu işaret ediyor. Aslında günümüzdeki daha iyi ölçümler sayesinde biliyoruz ki Zwicky’nin bulduğu 400 kat değeri, Hubble’ın 1929 yılında evrenin genişlediğini gösterdiği hatalı miktarı kullandığı için biraz fazla. Fakat yine de günümüzdeki (artık hata neredeyse yok denecek kadar az) değeri, 50 kat fazla materyal olduğuna işaret ediyor. Yani günümüz bilgisini kullanarak, teknolojik sınırları aşarsak, gözlemler hala geçerli.

1975 yılında Morton Roberts ve Robert Whitehurst, 1970 yılında Vera Rubin ve Kent Ford tarafından yapılan daha detaylı Andromeda gözlemlerini inceleyerek, Andromeda’nın dış bölgelerinde fazladan 200 kat fazla görülemeyen materyal olduğu sonucunu buluyorlar. İlginç bir şekilde Roberts ve Whitehurst, 1933 yılında Zwicky’nin ve 1936 yılında Smith’in yaptığı çalışmadan haberdar değiller gibi görünüyor (herhangi bir atıfta bulunmamışlar).

Karanlık Madde Ne Olabilir?

Evrenin her bir köşesinde bulunan ve bizleri oluşturan elementleri tespit etmek aslında oldukça kolaydır. Bunların belirli bir ışık saçmalarına ya da bu ışığı yansıtmalarına gerek olmadan da bu karanlık, soğuk elementleri görebilirsiniz. Buna imkan sağlayan şey, atomların çekirdekleri etrafında dolanan elektronlardır. Farz edelim ki ortamda oldukça soğuk bir hidrojen bulutu var. Etrafında da onu aydınlatabilecek hiçbir şey yok, kendisi de soğuk olduğu için oldukça sönük. Dolayısıyla karanlık bir yapıya sahip olacaktır. Peki gerçekten böyle bir şey ile karıştırıyor olabilir miyiz?

Bu pek mümkün değil. Çünkü böyle bir ortam, içerisinden geçen bir fotonla etkileşime girer. Yani arka plandan gelen ışık, o ortamın içerisinden geçerken, ortamdaki elektronları bir üst enerji düzeyine çıkarırken bir miktar enerji kaybederler. Bu enerji kaybını, gök cisminin tayfını (spektrumunu) aldığımızda çok rahatlıkla görebiliriz. Hatta soğurulmanın tipini inceleyerek, oradaki ortam hakkında ciddi anlamda detaylı bilgilere ulaşabiliyoruz. Fakat karanlık madde olduğunu düşündüğümüz ortamda böyle bir etki görmüyoruz. Yani orada bulunan şey her ne ise, elektromanyetik bir etkileşime girmiyor.  

Karanlık Madde Adayları

Geçmişten günümüze birçok karanlık madde adayı önerilmiştir. Bununla kastımız aslında, evrende gözlediğimiz yaklaşık %26’lık madde yoğunluğu eksikliğini (karanlık maddeye atfettiğimiz) ne ile açıklayabileceğimizdir. Planck uydusunun 2015 verilerine göre, evrenin madde yoğunluğu dağılımı, tecrübe ettiğimiz maddenin evrenin yalnızca %4.9’unu oluşturduğunu gösteriyor. Geri kalan %26 karanlık maddeye, %69.1 ise karanlık enerjiye ait. Dolayısıyla bu kütleyi açıklayabilecek adaylara ihtiyaç var.

karanlık madde yoğunluğu miktarı
Evrendeki maddenin dağılımı.

Kara Delikler

Elbette ilk akla gelen adaylardan birisi, herhangi bir ışıma yapmıyor olması sebebiyle kara delikler oldu. Bu zamanla ilksel kara delikler eksenine kaydı. Her ne kadar kara deliklerin doğrudan gözlemini yapamıyor olsak da, özellikle süper kütleli kara delikleri dolaylı yoldan görmek mümkün. Bu gözlemler aynı zamanda kara deliklerin varlığına kanıt olan gözlemlerdir. Örneğin Samanyolu’nun merkez bölgesine baktığımızda orada “bir şeyin” etrafında yüksek hızlarda dolanan bir sürü yıldız gördük. Yapılan hesaplamalar 2.5 milyon Güneş kütlesinde bir cismin etrafında dolandıklarını gösteriyordu. Bu, ancak bir kara delik olabilirdi (ayrıca bkz. Yıldızlarda maksimum kütle).

Keza zamanla kara deliğin etrafında toplanan madde, X-ışını bölgesinde görünür bir ışıma yaymaktadır. Lakin her kara delik süper kütleli bir kara deliğe dönüşemiyor. Dolayısıyla sadece gözlemlerini yaparak, karanlık maddeden gelen bu boşluğu doldurmak mümkün olmayacaktır. Bu nedenle, yıldız evrimi modelleri ve evrenin yaşını da referans alan istatistiksel yaklaşımlar yapılması gerekir. Bunlar yapıldığında görülüyor ki, bu boşluğu doldurabilecek kadar kara delik oluşmuş olması pek mümkün değil. Lakin ilksel kara delikler için tartışmalar daha uzun sürüyor, fakat bunlar da günümüzde çok güçlü adaylar değiller (ayrıca bkz. Kara delik nedir, ilksel kara delikler).

WIMP’ler – Weakly Interacting Massive Particles

Türkçesi “zayıf etkileşen (büyük) kütleli parçacıklar” olan WIMP’ler, 1980’lerde ortaya atıldı. Öngörülen kütle aralıkları 1-1000 GeV arasında olan WIMP’ler başlangıçta kuvvetli bir aday olması nedeniyle bu alana oldukça büyük yatırımlar yapıldı ve üzerinde birçok araştırma yürütüldü. Fakat özellikle 2016 ve sonrasında yapılan çalışmalar WIMP çözümünü büyük ölçüde raftan kaldırdı. 2018 yılında XENON1T ile yapılan çalışma, hiçbir şey bulamadıklarını yayınlandı. Bu sonuçlar aynı zamanda süpersimetriye dair de soru işaretlerini yükseltti, fakat hala WIMP’ler gözde ve araştırılan adaylardan biri (bkz. SuperCDMS).

Axion

Axionlar, 1977 yılında Peccei-Quinn teorisi tarafından kuantum kromodinamiğindeki (QCD) güçlü CP problemine çözüm olarak öne sürüldü. CP, charge-parity yani yük-parite simetrisini ifade eder. Kuantum kromodinamiğinin matematiği gereğince güçlü etkileşimlerde CP-simetrisinin ihlal edilmesi mümkün olmalıdır. Fakat bu türden bir ihlal hiçbir deneyde gözlenememiştir. Her ne kadar kuantum kromodinamiğince CP simetrisinin korunması bir zorunluluk olmasa da bu türden bir durum “hassas ayar” problemi olarak görüldüğü için “güçlü CP problemi” olarak anılmaktadır. Aynı zamanda bu bakış açısına karşı çıkıp, bunun bir problem olmayacağını dile getiren birçok fizikçi vardır.

Axionlar oldukça hafif kabul edilebilecek teorik parçacıklar ve kütleleri 10-5 ve 10-3 eV/c2 arasında yer alıyor. Her ne kadar düşük kütleli olsalar da öngörülen bollukları göz önüne alındığında, karanlık maddenin yerini doldurmaları söz konusu olabilir. Bu parçacıkları tespit etmek için oldukça yüksek hassasiyetler gerekiyor ve henüz bir sonuç alınabilmiş değil. Fakat ADMX (Axion Dark Matter eXperiment) gibi çalışmalardan bu konuda önemli sonuçlar bekleniyor.

Steril Nötrino

Nötrinolar oldukça zayıf etkileşen parçacıklar ve bunları tespit etmek oldukça güç. Öyle ki içimizden her an milyonlarcası öylece geçip gidiyor. Bunları tespit edebilmek için kurulan gözlemevlerinden biri olan IceCube Nötrino Gözlemevi, kutupta buzulların 1.5 kilometre ile 2.5 kilometre altında yer alıyor. Burada bir kilometre karelik alanı çevreleyen 5160 tane fotodedektör, neden olunan Cherenkov ışımasını gözleyerek nötrinolar hakkında (ve onların astrofiziksel kaynakları hakkında) bilgi topluyor.

Şu ana kadar 3 nötrino çeşnisi (flavor) tespit edildi. Bunlar elektron nötrino, müon nötrino ve tau nötrinodur. 2002 yılına kadar Güneş’ten bize ulaşan elektron nötrinoların sayısıyla ilgili önemli bir problem bulunuyordu. Bu durum, elektron nötrinoların Güneş’ten bize geldikleri yolculuk sırasında bir çeşniden diğer çeşniye dönüştüklerinin bulunmasıyla çözüldü.

Steril nötrino da teorik olarak ortaya atılan dördüncü çeşni ve henüz bir keşif yapılabilmiş değil. Problem burada da bitmiyor, keşifleri doğrulansa bile karanlık maddenin kapladığı kütle aralığı doldurup dolduramayacakları şüpheli.

SIMP’ler – Strongly Interacting Massive Particles

Şu ana kadar bahsedilen diğer örnekler herhangi bir alt parçacıktan oluşmayan parçacıklardı, fakat SIMP’ler daha küçük alt parçacıklardan oluşuyor ve WIMP’lere karşı bir tarafı var.

WIMP’ler, yapılan modellerde galaksilerde kümelenmiş karanlık madde öbekleri oluşturmalı. Fakat gözlemler karanlık maddenin neredeyse eşit bir şekilde dağıldığını gösteriyor. Bu noktada oklar SIMP’lere dönüyor. Ayrıca SIMP’ler karanlık maddenin kapladığı kütle aralığını doldurabilir. Diğerlerine göre oldukça yeni olup 2014 yılında ortaya atılan bu aday, gözlemler için henüz üzerinde çalışılmayı bekliyor.

Günümüzde Karanlık Madde

Aradan geçen neredeyse bir yüzyıllık süre boyunca, gelişen teknoloji ve gözlem teknikleri sayesinde bu gözlemler daha da detaylandırıldı. Günümüzde artık evrendeki karanlık madde miktarının, normal (baryonik) madde miktarına olan oranını dahi hassas bir şekilde bilebiliyoruz. Bunu ölçmemizi sağlayan metotlardan biri de, neredeyse herkesin adını bildiği kozmik mikrodalga arkaplan ışıması üzerinde yaptığımız analizlerdir.

Aynı zamanda galaksi kümelerinin, sahip oldukları aşırı miktardaki kütle sebebiyle uzay-zamanı bükmeleri, bir mercek etkisi yaratmaktadır. Bu sayede arka planında kalan galaksiler büyütülmüş ya da görüntüleri bozulmuş bir şekilde birkaç yerde aynı anda görünebilir (tıpkı bir bardağın bir nesnenin önüne geçtiğinde olduğu gibi). Bunun gibi çeşitli metotlarda yaptığımız gözlemler tek bir şeyi işaret ediyor: Bu durumu elimizdeki fizik yasalarıyla uyumlu bir şekilde açıklamak için, açık bir şekilde orada daha fazla miktarda madde olmalı.

Ya da! Açık bir şekilde genel görelilik eksik. Hatırlayın, varsayımımız merkezkaçı dengeleyen bir kütle çekimdi. Kütle çekimin daha fazla olması gerektiğini söylüyoruz, bunu yapmanın pratikte iki yolu vardır; ya daha fazla madde eklersiniz, ya da kütle çekim fonksiyonunu değiştirirsiniz. Artık Einstein sayesinde aslında kütle çekim diye bir şey olmadığını, bu durumun maddenin uzay-zamanı bozması olduğunu biliyoruz. Yani yapmamız gereken iki şey vardır; ya karanlık maddeyi bulacağız ya da Einstein’ın genel görelilik kuramındaki eksikliği, onu modifiye ederek gidereceğiz.

Aslında bakarsanız ikinci seçenek günümüzde yapılmış durumdadır. Hem de birden çok! Günümüzde karanlık madde ve karanlık enerji ihtiyacını ortadan kaldırmak için, genel görelilik üzerinde modifiye yaparak bu sorunu çözen bazı teoriler bulunmaktadır. Fakat bunların, gözlemlerle desteklenmesi gerekiyor ve ne yazık ki bu gözlemlerin birçoğunu hala yapabileceği teknolojiye (daha doğrusu yatırıma) sahip değiliz. Kozmologlar sorunu bu şekilde çözmeye çalışırken, bir yandan da parçacık fizikçileri karanlık madde parçacığı olabilecek parçacıklar arıyor. Yapılan çalışmalar, simülasyonlar olası bazı durumlar gösterse de henüz net bir şey bulunabilmiş değil. Yani özetle, bilim dünyası şu anda çorap söküğünün ucunda olabilir, yalnızca o çorap bir türlü sökülemiyor.

Kim Haklı?

Bu sorunun cevabı, karanlık maddenin gerçekte ne olduğu sorusunda saklı görünüyor. Açıkçası konu hakkında çok fikrimiz olsa da, ne olduğu hakkında tam olarak hala bir fikrimiz yok. Her ne olursa olsun bu durum, iki taraftan birinin boşa uğraştığı anlamına gelmiyor. Bilim, doğru olanı bulmak kadar, doğru olmayanları bulmakla da ilgilenir. Kaldı ki bu sırada, diğer konulara katkı sağlayacak birçok keşifte de bulunabiliyorsunuz. Fakat bazı bilim insanları, teorik bu iki alandan, sırf bu sebeple uzak durmaktadır. Çünkü diğer alanlar kadar ortaya bir ürün sunma imkanınız bulunmamaktadır. 

Bazen yıllarca bir konu üzerinde çalışırsınız, başlangıçta çok makul görünür, fakat elde ettiğiniz sonuç o kadar anlamsızdır ki, tüm o çaba çöpe gider. Fakat doğru cevabın da, bir o kadar değerli olduğu açık. O yüzden bu devasa merak duygusu, bu alanla uğraşanları motive etmektedir. Şüphesiz ki doğru cevabı bulacak kişi ya da kişiler, tarihe geçecekler. Belki de çoktan bulundu ve yalnızca doğrulanmayı bekliyor, kim bilir, zamanla göreceğiz!

*Dipnot: Aslında daha Zwicky’den önce de bu konularla ilintili olabilecek yayınlar var, fakat ben en net başlangıç olarak bunu uygun gördüm. Eğer elinizde daha iyi tarihsel bir veri varsa, lütfen bizimle iletişime geçin.


Hazırlayan: Ögetay Kayalı

Referanslar

1. Zwicky, F. (2009). Republication of: The redshift of extragalactic nebulae. General Relativity and Gravitation, 41(1), 207–224. https://doi.org/10.1007/s10714-008-0707-4

2. Smith, S. (1936). The Mass of the Virgo Cluster. The Astrophysical Journal, 83, 23.

3. Babcock, H. W. (1939). The rotation of the Andromeda Nebula. Lick Observatory Bulletin, 19, 41–51. https://doi.org/10.5479/ADS/bib/1939LicOB.19.41B

4. Rubin, V. C., & Ford, W. K. J. (1970). Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. The Astrophysical Journal, 159, 379. https://doi.org/10.1086/150317

5. Roberts, M. S., & Whitehurst, R. N. (1975). The Rotation Curve and Geometry of M31 at Large Galactocentric Distances. The Astrophysical Journal, 201, 327–346.

6. van den Bergh, S. (1999). The Early History of Dark Matter. Publications of the Astronomical Society of the Pacific, 111(760), 657–660. https://doi.org/10.1086/316369

7. What is Dark Matter Made Of? These Are the Top Candidates, <https://www.discovermagazine.com/the-sciences/what-is-dark-matter-made-of-these-are-the-top-candidates>

Ögetay Kayalı

Rasyonalist kurucu, editör ve kıdemli yazar. NASA'nın APOD platformunda görevli olmak üzere, Michigan Tech. Üniversitesinde araştırma görevlisi olarak Astrofizik üzerine doktora yapmaktadır. Ege Üni. Astronomi ve Uzay Bilimleri Bölümünden birincilikle mezun olduktan sonra bir yıl kozmoloji üzerine yüksek lisans, ardından bir yıl da İzmir Uluslararası Biyotıp ve Genom Merkezinde Moleküler Biyoloji ve Genetik üzerine yüksek lisans yapmıştır.

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button

Destek Ol!


Neden desteğinize ihtiyacımız var: Çünkü Rasyonalist'in tek destekçisi sizlersiniz.

Rasyonalist'in masraflarını karşılamak, gelişimini sağlamak, profesyonel ekipmanlara ulaşarak bunlarla sizlere daha iyi hizmetler verebilmek için desteğiniz gerekiyor.

 

Bağışta bulunmakla ilgili soru işaretlerinizi yanıtlayabilmek için, hakkımızda sayfamıza göz atmanızı öneriyoruz.