Elektromanyetik Dalgalar: Radyo Dalgaları Nedir?

Radyo dalgaları, elektromanyetik spektrumda (tayfta) en büyük dalga boyuna, yani en küçük frekansa sahip elektromanyetik dalgalardır. Öyle ki Dünya’nın boyutuyla kıyaslanabilecek ölçüde büyük bir dalga boyuna sahip olabilirler.

Radyo dalgalarının frekans aralığı 300 gigahertz (GHz) ile 30 hertz (Hz) arasındadır. Bu değerler dalga boyu olarak 1 milimetre (mm) ile 10,000 kilometre (km) aralığına karşılık gelir.

Radyo dalgaları ivmelenmekte olan yüklü parçacıklar tarafından üretilir. Her ne kadar radyo kelimesiyle özdeşmiş olsa da sadece yapay olarak üretilmezler. Yıldırımlar ve bazı astronomik olaylar da doğal radyo dalgası kaynağıdır.


Radyo dalgası ses hızında mı ilerler?

Radyo dalgası mekanik dalga değil, tıpkı görünür ışık gibi bir elektromanyetik dalgadır. Bu nedenle ışık hızında ilerlerler. Yalnızca dalga boyları çok daha büyüktür (frekansları çok daha düşüktür).


Radyo Dalgalarının Keşfi

Radyo dalgaları ilk olarak 1867 yılında İskoç matematiksel fizikçi James Clerk Maxwell tarafından teorik olarak öngörülmüştür. Günümüzde Maxwell denklemleri olarak da bilinen bu teori, ışığın bir elektromanyetik dalga olduğunu göstermiştir.

1887 yılında Alman fizikçi Heinrich Hertz, laboratuvarında deneysel olarak radyo dalgaları üreterek, Maxwell’in teorisini doğrulamıştır. Bu deneyde radyo dalgalarının ışık ile aynı özellikleri (polariasyon, kırılma vb.) taşıdığını göstermiştir.

1894-1895 yılları arasında İtalyan mucit Guglielmo Marconi, ilk radyo alıcı ve vericisini geliştirmeyi başarmış ve bu başarısıyla 1909 Nobel Fizik Ödülü’nü kazanmıştır.

Radyo Dalgası Nasıl Oluşur?

Radyo dalgaları ivmelenen yükü parçacıklar tarafından oluşturulur. Yapay olarak bunu sağlamak için zamanla değişen elektrik akımları kullanılır. Bu amaçla özel olarak şekillendirilmiş metal iletkenler olan antenler icat edilmiştir. Radyo vericisi adı verilen elektronik aygıt, antene salınım yapan (osilasyon yapan) bir elektrik akımı gönderir. Böylelikle anten bu gücü radyo dalgaları olarak yayar.

Yayıldıktan sonra bir radyo alıcı bu sefer tersi prensiple bu dalgaları yakalar. Radyo dalgaları antene çarptığı zaman metaldeki elektronları ileri geri hareket ettirir. Böylelikle alıcı tarafından tespit edilebilir bir osilasyona neden olur.


Radyo nasıl çalışır?

Bir antene zamanla değişen bir elektrik akımı uygulanması sonucunda radyo dalgaları antenden yayılır. Alıcı bir antene çarpan bu dalgalar, elektronları titreştirerek tespit edilebilir bir osilasyona neden olur. Ardından bu dalgalar, radyo içerisinde çeşitli işlemlerle mekanik ses dalgalarına dönüştürülür.


Radyolarda istediğimiz kanalı dinlemek için frekans ayarı yaptığımızda aslında dalga boyunu da ayarlamış oluruz. Elbette radyoya ulaşan bu dalgalar birer elektromanyetik dalgadır ve insanlar tarafından tespit edilemez. Bu nedenle ona yüklenen veri (görüntü, video, ses vb.) dönüştürülmelidir. Radyolar, elektromanyetik dalgalar olan radyo dalgalarını alarak onları mekanik dalgalar olan ses dalgalarına çevirir.

Bir radyo alıcısının temel diyagramı.

Radyo Dalgası Kaynakları

Aynı zamanda doğal radyo kaynakları da bulunur: Şimşekler bunun iyi bir örneğidir. Çünkü burada da ivmelenen yüklü parçacıklar söz konusudur. Bununla birlikte manyetik alanı değişen, astronomik cisimler de radyo dalgaları yayınlarlar. Wind uzay aracı üzerindeki bir radyo astronomi ölçüm cihazı olan Waves, Güneş’in koronası ve diğer gezegenlerden gelen radyo dalgalarını kaydetmiştir.

Wind uzay aracının güneş rüzgarı gözlemindeyken resmedilmesi.

Radyo Astronomi – Radyo Teleskoplar

Dünya dışı doğal radyo dalgası kaynaklarının bu özelliklerinden ötürü radyo teleskopları, gezegenlerin, kuyruklu yıldızların, dev gaz ve toz bulutlarının, yıldızların, galaksilerin, kara deliklerin ve daha birçok gök cisminin gözlemini yapmaktadır. Bu kaynaklardan gelen radyo dalgalarını inceleyerek cismin bileşenleri, yapısı ve hareketi gibi nicelikler belirlenebilmektedir.

Radyo astronominin büyük bir avantajı, büyük dalga boyundan ötürü ölçümün Güneş ışığından, bulutlardan ve yağmurdan etkilenmemesidir. Radyo dalgaları, görünür bölgeden çok daha büyük oldukları için radyo teleskoplar, daha çok bilinen görünür bölge teleskoplarından yapısal olarak farklıdır. Öncelikle çok daha büyüktür ancak çanağı bir ölçüde hafifletebilmek için üzerine küçük delikler açılabilmektedir.

Very Large Array (VLA) Radyo Teleskop Dizisi

Ancak görüntülemelerinde çözünürlük herhangi bir optik teleskoba göre bile küçüktür. İyi çözünürlüklü bir görüntüleme için genellikle tek bir teleskop gibi davranan daha küçük teleskopların dizilimli bir birleşimi kullanılır. Böylece çözünürlük teleskopların bulunduğu tüm alana göre olur. Bu teknikle New Mexico’daki VLA toplamda 36 km’lik bir genişliğe sahiptir.

Mesela 408 MHz’e ayarlanmış bir radyo teleskopla gökyüzüne bakarsak, görünür bölgenin bize göstereceklerinden daha farklı şeyler görürüz. Uzaklardaki yıldız oluşum bölgeleri, süpernova kalıntıları ve pulsarlar (atarcalar-atma yapan nötron yıldızları) bunlara örnektir.

Radyo teleskopları ile ayrıca kuazarları (yıldızsı radyo kaynakları-dev nebulalar, öncül yıldızlar ve merkezde bunlarla beslenen süper dev kara delikten oluşan galaktik sistemler) da gözlemleriz. Bu çok uzak gök cisimlerinin görünür bölge ışıkları aramızda kalan diğer gök cisimleri tarafından bloke edilir. Ancak radyo teleskoplar ile gözlendiklerinde daha net ve parlak görülürler.

3C 273 kuazarı ve jeti

Hidrojen 21 cm Çizgisi

Astronomi gözlemlerinin belki de en önemlilerinden birisi, hidrojenin 21 santimetre çizgisidir. Frekans olarak 1420 MHz değerine karşılık gelen bu çizgi, hidrojenin 1s temel durumundaki iki farklı seviye arasındaki geçişten gelir. Bu durum elektron spini ve nükleer spin ile alakalıdır. Bu iki spinin aynı yönlü olduğu durumdan, zıt oldukları duruma geçişi sırasında 21 cm dalga boyuna karşılık gelen (1420 MHz) bir radyo dalgası yayınlanır.

Hidrojen 21-cm çizgisinin oluşumu. Görsel: Hyperphysics

Evrende bolca hidrojen bulunduğundan, hidrojenin 21 cm çizgisi gözlemi birçok noktada aydınlatıcı veriler sunar.

Radyo Paraziti-Gürültüsü

Şehir şebekesinden alınan elektriğin geçtiği her kablo da aslında bir radyo dalgası kaynağıdır. Unutmamak gerek ki ivmelenen yüklü parçacıklar bu dalgaları üretecektir. Bu nedenle radyo teleskopların sinyal-gürültü oranını (SNR) yüksek tutmak için, bu tür kaynaklardan uzak ıssız yerler tercih edilir. Aksi takdirde arka plandan gelen parazit, veriyi daha anlaşılmaz kılacaktır.


Radyo dalgaları uzayda sonsuza kadar yayılır mı?

Bazı bilim kurgu filmlerinde görülebilen, Dünya’daki yayınların uzaya yayıldığı bilgisi tam olarak doğru değildir. Antenden çıkan dalgalar belirli bir açıyla çıktığı için, mesafe kat ettikçe daha büyük bir alana dağılırlar. Bu nedenle belirli bir mesafe sonra, birim alana düşen sinyal o kadar azalacaktır ki bir gürültü haline gelecek, hatta yok olacaktır.


Kısaca Radyo Dalgalarının Özellikleri


Hazırlayan: Emir Haliki & Ögetay Kayalı

Referanslar

  1. NASA, Radio Waves, <http://missionscience.nasa.gov/ems/05_radiowaves.html>
  2. Wikipedia, Radio wave, <https://en.wikipedia.org/wiki/Radio_wave>
  3. Hyperphysics, The Hydrogen 21-cm Line, <http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/h21.html>
Exit mobile version