EvrenFizikKlasik Mekanik

Genel Fizik – 4: Eğik Atış Hareketi – Konu Anlatımı, Örnek Soru, Formüller

Hikayenin Öne Çıkanları
  • Eğik Atış Hareketi
  • Adım Adım İnceleme
  • Eğik Atış Formülleri
  • Parabol Hareketin İspatı
  • Örnek Soru

Genel fizikte eğik atış hareketini, mekaniğin temellerini anlamada her zaman anahtar bir giriş noktası olarak görmüşümdür. Fazlaca gözden kaçan bu konu, bazı konseptleri anlayacak bakış açılarını geliştirmemizde kilit bir rol oynuyor. Bu nedenle eğik atışları sadece formüller ve örnekler bağlamında incelemeyip, işin gerçekten fiziğini açıklayarak bu konuyu daha iyi kavramanızı sağlayacağız.

Eğik atış hareketi, yatayda belirli bir açıyla fırlatılan bir cismin, yer çekiminin etkisiyle zamanla yere yine belirli bir açıyla düşmesi hareketidir. Bu sırada fırlatılan cisim (örneğin bir top) bir eğri izler. Başlangıç aşamasında olduğumuzdan işlerimizi kolaylaştırması adına şu iki kabulü yapmamız gerekiyor:

  1. g yer çekimi ivmesi hareket boyunca sabittir.
  2. Hava sürtünmesinin etkisi ihmal edilmektedir.

Birinci maddenin amacı şudur, yer çekimi ivmesi, yüzeyden uzaklaştıkça azalır yani aslında sabit değildir. Fakat bu tür gündelik örneklerde bu miktar o kadar azdır ki, onu sabit kabul etmemek işleri karmaşıklaştırmaktan başka bir işe yaramaz. İkinci maddenin amacı ise eğrimizi daha pratik bir şekilde tanımlayıp karmaşadan kaçmaktır. Elbette bu ikisini de dahil ettiğiniz hesaplamalar yapabilirsiniz, fakat henüz ihmal ettiğimizin bile nasıl olduğunu bilmiyoruz! Her şey sırayla.


Eğik Atış Hareketi

Eğik atış hareketini aşağıdaki görselle ifade edebiliriz. Cisim belirli bir başlangıç hızı v_i, belirli bir başlangıç açısı θ_i ile fırlatılmaktadır. Burada dikkat etmeniz gereken i alt indisidir, bu başlangıç değerini belirtmek için kullandığımız bir göstergedir (İng. initial). Bazıları “0” ile de gösterir.

eğik atış hareketi grafik
Figür 1: Eğik atış hareketinin gösterimi. Telif: Rasyonalist.org

Yukarıdaki görseli detaylıca incelemeden önce biraz düşünelim. Fiziğin mekanik kısmından bahsediyoruz, dolayısıyla bu kısım aslında bizim hayatımızda “tecrübe ettiğimiz” olgularla dolu. O halde sezgilerimizi kullanabiliriz, bırakın algılarınız işi yapsın. Öncelikle tahmin edelim, eğik atılan bir cisme ne olur?

  1. Önce yukarıya doğru çıkacak, sonra aşağıya doğru düşecektir.
  2. Bunu yaparken açıya bağlı olarak bir miktar da yatayda yol alacaktır.
  3. Yukarı çıkıp aşağıya indiğine göre, bu hareketin durduğu bir tepe noktası olacaktır.
  4. Eğer çok dik açıyla atarsak yatayda çok az hareket edecektir.
  5. Eğer çok dar bir açıyla atarsak çabuk düşeceği için yatayda yine az hareket edecektir.
  6. O halde bir “ara açı” değeriyle en ileri noktaya fırlatmak mümkün olmalıdır.

Belki bunlar şu anda sizin sezgilerinizle tam örtüşmüyor olabilir, hepsine katılmayabilirsiniz. Lakin hepsinin doğru olduğunu ve en önemlisi neden öyle olması gerektiğini göstereceğiz. Öncelikle hareketi adım adım inceleyelim.

A Noktası

Burada bir başlangıç (ilk) v_i hızıyla topumuzu fırlatıyoruz. Fırlatma açımızı da θ_i olarak seçtik. Vektörler konusunda da ele aldığımız üzere bu hız vektörünün bir dikey (y-eksenindeki) bir de yatay (x-eksenindeki) bileşeni bulunur. Biz v_i’nin yataydaki bileşenine, x-ekseni bileşeni olduğu için v_xi diyeceğiz. Elbette dikeydekine de v_yi. Buradaki i indisinin, ilk değeri ifade ettiğini unutmayın. Eğer değer farklıysa i indisi koymamalıyız.

B Noktası

Topumuz belirli bir miktar ilerledi, fakat henüz zirvede değil. Yer çekiminin etkisi, başlangıçta ona dikey olarak verdiğimiz hızı zamanla azaltıyor. Dolayısıyla artık dikey bileşenin büyüklüğü daha az. Mavi ile gösterilen dikey hız vektörünün küçüldüğünü görebilirsiniz. Fakat yatayda bize engel olan hiçbir şey yok (sürtünmeyi ihmal etmiştik). Dolayısıyla hangi konumda olursa olsun yatay bileşenimiz hep v_xi olacak.

Yatay bileşenin daima sabit olması, faydalanabileceğimiz önemli bir özellik. Bunu cebinizde tutmanızı öneririm. Çünkü sabitlerle iş yapmak daima daha kolaydır.

C Noktası

Burası tam olarak dikeyde cismin “o anlık” durduğu nokta. Dolayısıyla hız vektörünün hiçbir dikey bileşeni yok. İlk bakışta aklınıza şu soru gelebilir: Eğer dikeyde bir hız vektörü yoksa, nasıl oluyor da sonrasında geri düşebiliyor? Cevap basittir, çünkü hala dikey yönde aşağı doğru etkiyen bir yer çekiminin tesiri altındadır.

Burada sadece yatay bileşenin olması da faydalanabileceğimiz bir özellik. Birazdan bunları nasıl kullanacağımızı göreceksiniz. Fakat bunları vurgulayarak dikkatinizi çekmek istediğim nokta, “bazı özel durumların” işimize nasıl yarayabileceği. Eğer problem çözerken bunlara dikkat ederseniz, size çok yardımcı olacaktır. Fizikçiler olarak yaklaşımımız daima bunları tespit etme üzerine kuruludur.

D Noktası

Aslında B noktasının artık aşağıya düştüğü halidir. Dikkat ederseniz artık hız vektörümüzün yönü aşağıya doğru. Çünkü başlangıçta verdiğimiz hızın dikey bileşeni, yer çekimi tarafından yok edildi ve şimdi onu kendi tarafına doğru çekerek aşağı yönde bir hız vektörü kazandırıyor (ivmenin hızın zamanla değişimini ifade ettiğini hatırlayın).

E Noktası

Tam olarak yere çarptığı noktadır. Burada dikkat edilmesi gereken yere çarpış hızının ve açısının yine v_i ve θ_i olduğudur. Başlangıçta bu kafanızı karıştırabilir. Lakin şunu hatırlayın, sürtünmeleri ve yer çekimi ivmesinin değişimini ihmal ettik. Dolayısıyla başlangıçta sahip olduklarımızı bizden alacak hiçbir şey yok. Bu nedenle hareket C noktasından itibaren tamamen simetrik bir şekilde ilerliyor.


Eğik Atış Formülleri

Bir fizikçi gibi probleme yaklaşıp, önce sezgilerimizle neler olduğunu anlamaya çalışıp, bize yardımcı olacak noktaları bir kenara not aldığımıza göre, artık işin fiziğini incelemeye başlayabiliriz.

İlk yapmamız gereken, ilk göze çarpan tanımları açıkça yazmaktır. Başlangıç hızımız v_i’yi biliyoruz, keza θ_i değerini de biliyoruz. O halde yatay v_xi ve dikey v_yi değerlerini basit bir trigonometriyle tanımlayabiliriz. Yatay bileşen kosinüs, dikey bileşen de sinüsüdür.

Daha önceden x=v_x * t olduğunu biliyorduk. Şimdi dikkat kesildiğimiz noktalardan birini kullanabiliriz. Çünkü v_xi’nin hareket boyunca değişmediğini biliyoruz. O halde yatayda alınacak yol için denklemde bunu yerine koyarak

olduğunu rahatlıkla görebiliriz. Aynı şeyi aslında dikey durum (y) için de yapabiliriz. Fakat burada yer çekimi ivmesinin etkisi olduğunu hatırlamamız gerekiyor. Dolayısıyla daha önce de anlattığımız üzere aşağıdaki ilgili formülü kullanmamız ve yerine koymamız durumunda

eğik atış dikey hareket

elde ederiz. Burada dikkatinizi çekmesi gereken a_y ivmesini g yaptığımızda başına eksi (-) işareti gelmesidir. Çünkü pozitifi yukarı yön olarak tanımladık. Yer çekimi aşağı doğru çektiği için işareti de bu durumda negatif olmalıdır.

Şimdi elimizde x_s ve y_s için iki ifade var. Bunları kullanarak basit bir numara yapacağız. Fizikte hareketli bir sistemin denklemini tek bir ifadede yazmak isteriz. Çünkü bu bize hareketin “biçimini” söyler. Bunun için yapmamız gereken hamle oldukça basittir. Her iki ifade de t (zaman) değişkeni var, dolayısıyla x_s ifadesini t için düzenleyip y_s denklemindeki t yerine yazarsam x’in, y’nin, v’nin ve θ‘nın bir arada olduğu

eğik atış hareket denklemi

denklemine ulaşırım. Karmaşık görünmesi canınızı sıkmasın. Aslında bu denklem aşağıdaki formun aynısıdır.

eğik atış parabol denklemi

Parabol Hareket

Bu da bir parabol denklemidir! Kabullerimiz altındaki bir eğik atış hareketinin, daima parabol eğri çizeceğini ispatlamış olduk. Bu denklemin matematiğini güzelce anlamaya çalışmanızı öneririm. Dikkat edin, eğer sadece ilk terim olsaydı, denklemimiz y=ax olurdu. Bu da aslında bir doğru denklemidir ve bu durum eğer yer çekimi olmasaydı (dikkat edin ilk terimde gerçekten de g yok), cismimiz attığımız ilk hız vektörünün yönünde dümdüz giderdi demektir!

Öyleyse ikinci terim olan -bx^2 terimi parabolü belirlemektedir ve gerçekten de öyledir çünkü ikinci terim g ifadesini pay kısmında barındırır. Yani yer çekimi ivmesi (g) ne kadar fazla olursa, doğrudan çıkarılacak y değeri o kadar fazla olacak, yani parabol daha çabuk kapanacak, cisim daha çabuk düşecek demektir ve bu da kesinlikle beklendik bir sonuçtur.

Buradaki matematiğin güzelliğin bununla bitmez. θ ifadesi için durumu değerlendirmek biraz zor olabilir çünkü ilk terimde de ikinci terimde de trigonometrik olarak bulunur. Bunu kafadan öngörmek biraz zordur. Lakin v_i ifadesi sadece ikinci terimde ve onda da paydada v_i^2 olarak bulunur. Yani hızı ne kadar artırırsanız, paydada olduğu için ilk terimden çıkarılacak değer o kadar azalır. Aslında karesi olduğu için daha da az azalır! Bu da hız arttıkça, daha yükseğe çıkabileceği anlamına gelir. Yine algılarımızla ve beklentilerimizle örtüşen bir güzelliği daha keşfetmiş olduk.

eğik atış parabol eğri
Figür 2: Eğik atışın parabol olması, yer çekimi ivmesini içeren terimden gelir. Eğer bu terim olmasaydı hareket doğrusal olacaktı. Telif: Rasyonalist.org

Dolayısıyla bu görseli aşağıdaki şekilde ifade edebiliriz.

eğik atış parabol denklemi 2

Burada ikinci terim, bu süreçte serbest düşen bir parçacığın aynı zamanda düşeceği yüksekliktir. Dolayısıyla bu eğik atış hareketi, bu iki hareketin üst üste binmesiyle oluşur.

Eğik Atışta Maksimum Yükseklik ve Menzil

Şimdi biraz daha uygulamadaki kısmına dönelim. Bundan önce yaptıklarımız hareketin doğasını anlamak üzerineydi. Unutmayın, eğer hareketi anlarsanız, geri kalan her şey çorap söküğü gibi gelir. Fakat anlamazsanız her şey bir ezber yükümlülüğüne dönüşecektir.

Kenara koyduğumuz püf noktalardan birini kullanalım. C noktasındaki dikey hızın sıfır olması, çünkü eğer ben bir denklemde dikey hıza karşılık bir şeyler yazarsam denklemin bir tarafını sıfır yapıp işleri basitleştirmiş olurum. O halde

Böylelikle C noktasına ulaşması için gereken t_c zamanını tanımlamış olduk. Fizikte denklemleri anlamak oldukça önemlidir, o nedenle sık sık durup, bu matematiğin size ne söylediğine bakmalısınız. Böylelikle her şeyi anlamanız ve hatırlamanız kolay olacaktır. Eğer dikkat ederseniz paydada bir g ifadesi var. Yani g ne kadar azalırsa t_c o kadar artıyor. Şimdi şu senaryoyu hatırlayın, eğer yer çekimi ivmesi olmasaydı, hareket doğrusal olacaktı. Bu bir tepe noktasının hiçbir zaman olmayacağı, sonsuza kadar tepeye tırmanacağını ima eder. Gerçekten de g değeri sıfıra yaklaştıkça t_c sonsuza gitmektedir!

Şimdi elimizde t_c değeri olduğuna göre bize yüksekliği veren denklemde bunu yerine koyarak

eğik atışlarda maksimum yükseklik formülü elde edilir. Bu denkleme dikkatlice bakacak olursanız herhangi bir zaman terimi içermediğini görürsünüz (çünkü zaten zamanın yerine başka değişkenler koyduk). Dolayısıyla bu formül herhangi bir zamandaki yükseklik değerini değil, bizim istediğimiz ilgili t_c zamanındaki yüksekliği, yani maksimum yüksekliği verir.

Maksimum yükseklik için kullandığımız t_c zamanını, menzil olan R için de kullanabiliriz. Fakat dikkat etmek gerekir ki, maksimum yüksekliğe, bitişe giden yolun yarısında kullandık. Dolayısıyla menzili hesaplarken t_c yerine 2t_c kullanmamız gerek. Yataydaki hareket için X=V.t formülümüzü hatırlayıp kullanırsak

yazabiliriz. Tek yapmamız gereken t_c terimini yerine yazmaktır.

Burada sin2x=2sinxcosx özdeşliğini kullanarak ufak bir düzenleme yapabiliriz. Son haliyle eğik atışlarda menzil formülü

eğik atışlar menzil yatay yol mesafe

olarak elde edilir. Yine denklemi inceleyecek olursak, sinüs ifadesinin en fazla 1 değerini alabileceğinden maksimum değerin başlangıç hızının karesi bölü yer çekimi ivmesi olduğunu görürüz (R_max=v_i^2/g). Yani eğik atışta yatayda alınabilecek maksimum mesafe 2θ=90° iken, dolayısıyla θ=45° iken gerçekleşir. Bu da bizi şu önemli sonuca ulaştırır:

Eğer bir cismi mümkün olan maksimum uzaklığa fırlatmak istiyorsanız 45° açıyla atmalısınız.

Bir diğer fark edilmesi gereken hoş nokta, 30° ve 60° ile attığınızda bunların ikisinin de aynı noktaya düşecek olmasıdır. Keza 15° ile 75° olanlar da aynı noktaya düşer (sanırım ilişkiyi yakalamış olmalısınız). Bunun nedeni sinx=sin(180-x) olmasıdır (2θ olduğunu unutmayın).

Serbest düşme için düşüş süresi (eğik atışlarda da kullanabilirsiniz), ivmeli ve hızlı hareket denkleminde, hız sıfır alınarak aşağıdaki gibi bulunabilir (örneğe bakınız).

eğik atış serbest düşme formülü


Örnek Soru

Eğik atışlar ile ilgili sorular biraz kafa karıştırıcı olabilir, lakin yukarıda anlattığımız konsepti eğer iyi anladıysanız, emin olun hepsini çözebilirsiniz. Anlamadıysanız da problem değil, birçok öğrenci tek seferde anlayamamayı bir problem olarak görür. Fakat bilim dünyasında işler böyle yürümüyor, o nedenle anlayana kadar tekrar okuyup üzerinden geçmeyi alışkanlık haline getirmenizi tavsiye ederim. Gerekirse zaman aralıklarına yayabilirsiniz.

Genelde temel olarak baktığımızda eğik atışlarda üç tipte zorlayıcı olabilecek soru var:

  1. Belirli bir yükseklikten atılıp yere düşen cisim.
  2. Bir duvardan sektirilip düşürülen cisim
  3. Hareketli bir hedefe atılan cisim

Örnek Soru: 45 metrelik bir binanın tepesinden 30° açıyla ve 20 m/s hızla atılan bir top ne kadar süre sonra yere düşer ve çarpma hızının büyüklüğü nedir? (g=9.8m/s^2)

İlk sorulan şey yere düşme süresidir. Bunun için problem oldukça basittir, çünkü düşme süresi sadece dikeydeki hareketle ilgilidir. Tek yapmamız gereken önce ne kadar yükseğe çıkacağını bulup çıkış zamanını belirlemek, ardından bu yükseklik artı binanın yüksekliğinden düşüş süresini bulmaktır. Unutmayın, bu noktada serbest düşüş yapıyor gibi düşünebilirsiniz, yatay hareketin bu durumla hiçbir ilgisi yok!

Yükseklik formülünü (h) hatırlayalım. 30° açı ile 20 m/s ve g değerlerini yerine koyarak h değerini hesaplayalım.

Bu durumda h=5.1 metredir. Buraya eğik atışta çıkış süresi için t_c formülünü hatırlayalım.

Bu durumda t=1.02 saniye eder. Şimdi tek yapmamız gereken (45+5.1) metreden serbest düşen bir cismin ne kadar sürede düşeceğini bulmak. Bunun için ivmeli bir harekette yer değiştirmeyi veren formülü kullanabiliriz.

eğik atış parabol denklemi 2

Burada r bizim için h değeridir. Tepe noktasında dikey doğrultuda hiçbir hareket olmadığı için ilk terim sıfırdır. Dolayısıyla sadece sağ terim kalır ve buradan t’yi çekebiliriz.

eğik atış serbest düşme formülü

Buradan t=3.2 saniye bulunur. Daha önce de çıkış süresi t=1.02 saniye olduğuna göre toplam uçuş süresi 4.22 saniye olarak bulunur.

Çarpma hızını bulmak için tepe noktasından itibaren yine ivmeli hareket formülümüzü kullanabiliriz. Bu noktadan düşüş süresi 3.2 saniyeydi.

eğik atış parabol denklemi 2

Elbette burada ivmenin başında negatif işareti olacağına dikkat çekmek gerek. Burada tek bilinmeyen v_i için denklem çözüldüğünde 31.3 m/s bulunur. Hareketin eksi yönde olacağını hatırlayarak bunu -31.3 m/s olarak düzenleyebiliriz. Yatay bileşeni de v_i ile kosinüs değerinin çarpımından 17.3 m/s olarak buluruz. Bu iki değerin karelerinin toplamının karekökü bize hız vektörünün büyüklüğünü verir. Bu da 35.9 m/s’dir.

Bu tür konsept sorularını çözerek eğik atışlar üzerinde pratik yapmanızı kesinlikle tavsiye ediyorum. Eğer bu tip eğik atış sorularını çözebilirseniz, gerisi gerçekten oldukça kolay olacaktır. Gördüğünüz üzere sadece basit birkaç denklemi kullanarak her şeyi hesaplayabiliyoruz. Tüm olay problemi doğru analiz edip, ilgili parçalara ayırıp basit hale indirgeyerek çözmekte.


Hazırlayan: Ögetay Kayalı

Referanslar

  1. Serway & Beichner, “Fen ve Mühendislik için Fizik – 1” syf. 82-91
  2. Feynman, Leighton, Sands, “Feynman Fizik Dersleri – Cilt 1: Mekanik, Işınım, Isı”

Ögetay Kayalı

Rasyonalist kurucu, editör ve kıdemli yazar. NASA'nın APOD platformunda görevli olmak üzere, Michigan Tech. Üniversitesinde araştırma görevlisi olarak Astrofizik üzerine doktora yapmaktadır. Ege Üni. Astronomi ve Uzay Bilimleri Bölümünden birincilikle mezun olduktan sonra bir yıl kozmoloji üzerine yüksek lisans, ardından bir yıl da İzmir Uluslararası Biyotıp ve Genom Merkezinde Moleküler Biyoloji ve Genetik üzerine yüksek lisans yapmıştır.
Başa dön tuşu